

UPRIGHT LEFT SINGLE LEG STANCE
by Ron Hruska

PRI Faculty Meeting - Sept. 29, 2022

Right leg off the ground through right hip flexion at or below 90 degrees.

Left arm up toward the ceiling through left shoulder/arm flexion (serratus anterior and upper trapezius) at or above 145 degrees.

Right arm down and by the side without touching the side.

[This stance reflects the communication between the left lower extremity and the left upper extremity; and therefore, difficulties with this stance may involve difficulties with the right brain (more commonly seen):

- problems with visual memory
- trouble with facial recognition
- lack of flexibility
- struggles with comprehension and problem solving
- issues with understanding emotions
- lack of spatial awareness
- difficulty with visual learning
- creative difficulties.

The stance that is opposite of the above, or upright right single leg standing, reflects the communication between the right lower extremity and the right upper extremity; and therefore, difficulties with this stance may involve difficulties with the left brain:

- difficulty understanding language
- inability to control reactions
- difficulty putting things in order
- low self-esteem and lack of confidence
- difficulty expressing oneself
- faulty logic
- problem with verbal memory.]

These lateral stance positions and function are very helpful to assess sensory midline processing and stabilization patterns of cortical/cerebellar based orientation.

Right leg off the ground through right hip flexion at or below 90 degrees.

Left arm down by the side without touching the side. (Single Leg Right Apical Overhead Reach)

Right arm up toward the ceiling through right shoulder/arm flexion (serratus anterior and upper trapezius) at or above 145 degrees.

[This stance reflects the communication between the left lower extremity and the right upper extremity; and therefore, difficulties with this stance may involve difficulties with the integration of electrical relay between the two hemispheres. This unsynchronized activity, this delay of cortical reception by the other hemisphere, or this imbalance of cortical neuro-receptivity or strength interferes with upright balance and cognitive processing. This 'functional disconnection' occurs when the right brain becomes more responsible than normal for the:

- small picture
- verbal communication
- small muscle control
- processing information
- conscious actions
- positive emotions
- high frequency sound
- low frequency light
- receiving auditory input
- impulsive actions

and the left brain becomes more responsible than normal for the:

- big picture
- non-verbal communication
- large muscle control
- interpreting information
- unconscious behavior
- negative emotions
- low frequency sound
- high frequency light
- interpreting auditory input
- cautious safe actions
- spatial awareness.]

Regardless if this positional stance is reversed, this single leg stance activity is very helpful in assessing sensory and motor integration between the left and right hemispheres of the cerebrum and the cerebellum, as well as between the upper and lower hemispheres of the diaphragm or mid thorax.

If functional disconnection occurs when standing on the left leg, as above, disconnection of the right brain, or right brain deficiencies for the left lower extremity is probably a greater issue than left brain deficiency.

If functional disconnection occurs only when standing on the right leg, disconnection of the right brain, again, or right brain deficiencies for the left upper extremity is more than likely a greater issue than left brain deficiency.

Right brain deficiencies are the most common type of deficiency seen in children with 'brain imbalance.'
Melillo R. Disconnected Kids. 2015